首页> 外文OA文献 >Simulation and Microfabrication Development of Folded-Waveguide Slow-Wave Circuit for THz Traveling-Wave Tubes
【2h】

Simulation and Microfabrication Development of Folded-Waveguide Slow-Wave Circuit for THz Traveling-Wave Tubes

机译:太赫兹行波管折叠波导慢波电路的仿真与微加工开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Folded waveguide is considered as a robust slow-wave circuit for traveling-wave tubes, particularly for millimeter wave and terahertz wave applications. The relatively simple full-metallic structure of folded waveguide facilitates its fabrication process to be compatible with microfabrication technology, and it is structural robust and thermally stable, especially when the circuit is downsized into microscale dimensions. In this thesis, a folded-waveguide slow-wave circuit working on 220GHz central frequency is targeted for investigation. The thesis includes two major parts, i.e. the theoretical study and electromagnetic field simulations, and an ultra-thick SU-8 process development based upon microfabrication technology. Our cold-circuit analysis reveals that the pass-band of the 220GHz central frequency folded waveguide is ~80GHz, which is between the cut-off frequency and the first stop-band. Parametric cold-circuit study provides better knowledge about how the varying structural parameters can influence the cold-circuit parameters. Optimization of cold-circuit properties via simulation also indicates a ~20GHz 3-dB bandwidth of the circuit, and this is used as the basis of further beam interaction circuit simulations. Following the cold-circuit analysis, we carried out the beam interaction circuit simulations and optimizations with the loss-free particle-in-cell (PIC) simulation method. Our PIC simulations reveal that the transverse dimension and shape of the electron beam tunnel have considerable impact on the beam-wave interaction. The model with circular-cross-section beam tunnel exhibits similar bandwidth, higher efficiency and gain, comparing to that with square-cross-section tunnel. It is also indicated that phase velocity taper of electromagnetic wave on the rear half of circuit can greatly improve the output power and increase the efficiency, up to 70 %. The peak loss-free output power and efficiency predicted by the PIC simulations are 70.5W and 8%, respectively. Experimental study of microfabrication for the folded-waveguide slow-wave circuit was also conducted with the ultra-thick SU-8 process. With the help of confocal laser scanning microscopy, we quantitatively analyzed the sidewall surface roughness of the SU-8 mold.The vertical striation along the sidewall surface was eliminated successfully by proper improvement on the post-exposure-bake conditions, and the RMS (Root Mean Square) line roughness on the SU-8 mold sidewall was greatly reduced from ~1 μm to ~70 nm. AFM analysis was also applied to examine the sidewall surface roughness, and the RMS surface roughness can be as low as 2.6 nm on the optimized samples.A novel micromachining process for fabricating the folded waveguide was developed in our study basing on fiber embedment SU-8 process. Our preliminary results indicate that the fiber can be mounted properly in the SU-8 serpentine mold.
机译:折叠波导被认为是行波管的稳健慢波电路,特别是对于毫米波和太赫兹波应用。折叠波导的相对简单的全金属结构有助于其制造工艺与微细加工技术兼容,并且结构坚固且具有热稳定性,尤其是在将电路缩小到微米尺寸时。本文以220GHz中心频率工作的折叠波导慢波电路为研究对象。论文包括理论研究和电磁场模拟两大部分,以及基于微细加工技术的超厚SU-8工艺开发。我们的冷电路分析表明,220GHz中心频率折叠波导的通带约为80GHz,介于截止频率和第一个阻带之间。参数冷回路研究可提供有关变化的结构参数如何影响冷回路参数的更多知识。通过仿真优化冷电路特性还表明电路的〜20GHz 3dB带宽,这被用作进一步的电子束相互作用电路仿真的基础。在进行冷回路分析之后,我们使用无损耗单元中粒子(PIC)模拟方法进行了光束相互作用电路的模拟和优化。我们的PIC仿真表明,电子束隧道的横向尺寸和形状对束波相互作用具有相当大的影响。与方形截面隧道相比,圆形截面梁隧道模型具有相似的带宽,更高的效率和增益。还表明,电路后半部分的电磁波相速度锥度可以大大提高输出功率并提高效率,最高可达70%。 PIC仿真预测的无峰值输出功率和效率分别为70.5W和8%。还利用超厚SU-8工艺进行了折叠波导慢波电路微细加工的实验研究。借助共聚焦激光扫描显微镜,我们定量分析了SU-8模具的侧壁表面粗糙度。通过适当改善曝光后烘烤条件和RMS(Root),成功消除了沿侧壁表面的垂直条纹SU-8模具侧壁上的均方根线粗糙度从〜1μm大大降低到〜70 nm。原子力显微镜分析还用于检查侧壁表面粗糙度,优化后的样品的RMS表面粗糙度可低至2.6 nm。基于SU-8纤维嵌入技术,我们研究了一种新颖的制造折叠波导的微加工工艺。处理。我们的初步结果表明,光纤可以正确安装在SU-8蛇形模具中。

著录项

  • 作者

    Zheng, Ruilin;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号